Ganglioside-magnetosome complex formation enhances uptake of gangliosides by cells
نویسندگان
چکیده
Bacterial magnetosomes, because of their nano-scale size, have a large surface-to-volume ratio and are able to carry large quantities of bioactive substances such as enzymes, antibodies, and genes. Gangliosides, a family of sialic acid-containing glycosphingolipids, function as distinctive cell surface markers and as specific determinants in cellular recognition and cell-to-cell communication. Exogenously added gangliosides are often used to study biological functions, transport mechanisms, and metabolism of their endogenous counterparts. Absorption of gangliosides into cells is typically limited by their tendency to aggregate into micelles in aqueous media. We describe here a simple strategy to remove proteins from the magnetosome membrane by sodium dodecyl sulfate treatment, and efficiently immobilize a ganglioside (GM1 or GM3) on the magnetosome by mild ultrasonic treatment. The maximum of 11.7±1.2 µg GM1 and 11.6±1.5 μg GM3 was loaded onto 1 mg magnetosome, respectively. Complexes of ganglioside-magnetosomes stored at 4°C for certain days presented the consistent stability. The use of GM1-magnetosome complex resulted in the greatest enhancement of ganglioside incorporation by cells. GM3-magnetosome complex significantly inhibited EGF-induced phosphorylation of the epidermal growth factor receptor. Both of these effects were further enhanced by the presence of a magnetic field.
منابع مشابه
Effects of Environmental Conditions on High-Yield Magnetosome Production by Magnetospirillum gryphiswaldense MSR-1
Background: Magnetotactic bacteria are a heterogeneous group of Gram-negative prokaryote cells that produce linear chains of magnetic particles called magnetosomes, intracellular organelles composed of magnetic iron particles. Many important applications have been defined for magnetic nanoparticles in biotechnology, such as cell separation applications and acting as carriers of enzymes, antib...
متن کاملDevelopment and survival of neurons in dissociated fetal mesencephalic serum-free cell cultures: II. Modulatory effects of gangliosides.
This paper analyzes the effects of exogenously supplied GM1 on the development, i.e., specific neurotransmitter uptake capability and survival, of the dopaminergic neurons present in fetal mouse-dissociated mesencephalic cells. Exogenous GM1, but not asialo-GM1, sialic acid, or the oligosaccharide chain of GM1, enhances in a time- and concentration-dependent manner the specific 3H-dopamine upta...
متن کاملRegulation of ganglioside biosynthesis in the nervous system.
Ganglioside biosynthesis is strictly regulated by the activities of glycosyltransferases and is necessarily controlled at the levels of gene transcription and posttranslational modification. Cells can switch between expressing simple and complex gangliosides or between different series within these two groups during brain development. The sequential biosynthesis of gangliosides in parallel enzy...
متن کاملInfluence of cellular ganglioside depletion on tumor formation.
BACKGROUND Gangliosides are immunosuppressive cell surface molecules that are often present in high concentrations in and shed actively by tumor cells. These molecules inhibit the antitumor immune response that is implicated in tumor rejection. We therefore determined the ability of tumor cells pharmacologically depleted of gangliosides to form tumors in mice. METHODS We tested a ganglioside-...
متن کاملSiglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1
HIV-1 particles assemble and bud from the plasma membrane of infected T lymphocytes. Infected macrophages, in contrast, accumulate particles within an apparent intracellular compartment known as the virus-containing compartment or VCC. Many aspects of the formation and function of the VCC remain unclear. Here we demonstrate that VCC formation does not actually require infection of the macrophag...
متن کامل